incredible shrinking window - improved limits from the LHC - improved measurements in top mass and w mass - provide strong motivation to focus on low-mass Higgs New World Average $M_W = 80390 \pm 16 \text{ MeV}$ $CDF \pm 19, DØ \pm 23$ #### The Tevatron at Fermilab - Tevatron protonantiproton collider at Fermilab - ©EWK scale processes probe different region of parton distribution than LHC - channel sensitivity differs from LHC #### Tevatron Shutdown September 30, 2011 photo courtesy of Bodhitha Jayatilika #### Tevatron Integrated Luminosity - @ delivered 11.9 fb-1 - exceptionally efficient in final years - o recorded w/ ~90% eff - final results ~10 fb-1 #### CDF II detector - Spectrometer: Outer tracker and Silicon Tracker in 1.4 Telsa Solenoid - Energy Flow: Fine segmented Calorimeter and Preshower (Steel/Iron and Scintillator) - Muons: multi layer scintilator and drift chamber systems - Hermetic: Excellent coverage of Tracking, Calorimeter and Muon Systems detector coverage muons ~ 2 tracking ~ 2.5 EM/jet ~ 4 #### Higgs Production at Tevatron Gluon fusion dominates Associated production (WH,ZH) Vector Boson fusion ## Higgs Production at Tevatron Gluon fusion dominates Associated production (WH,ZH) Vector Boson fusion M_H<135, H→bb M_H >135, H->WW ## Higgs search at Tevatron - focus on the low Higgs mass region - re-evaluate current analysis tools to optimize signal acceptance - improve b-tagging strategy - jet energy resolution - develop new MVA discriminants - validation of search techniques in diboson measurements ## Higgs search at Tevatron - focus on the low Higgs mass region - re-evaluate current analysis tools to optimize signal acceptance - improve b-tagging strategy - jet energy resolution - develop new MVA discriminants - validation of search techniques in diboson measurements #### WH -> lvbb Search - Identification of b-quarks critical component - Background rejection - •H→bb reconstruction # numerous b-taggers across several analyses # led to requirement for combined tagging channels | OLD – Multiple Taggers
Tagging Category | S/√B | |--|-------| | SecVtx+SecVtx | 0.228 | | SecVtx+JetProb | 0.160 | | SecVtx+Roma | 0.103 | | Single SecVtx | 0.146 | | Sum | 0.331 | ## identifying b-quark jets - previous taggers used in top quark, exotic, and qcd analyses - utilize all features in single b-tagger - displaced vertices - high impact parameter single tracks - soft charge muons from semi-leptonic decays Optimize tagger for Higgs kinematic region and tagging thresholds # Higgs optimized bidentification tagger - 25 input variables drawn from other taggers - vertex: L3D, σ(L3D), vertex invmass, pseudo-cτ, - \bullet tracks: b-like track score (10), track multiplicity, track inv mass, total track p_T - soft muon kinematics - two operating points optimized for use in H→bb ## HOBIT performance | tagger | eff | HOBIT | increase | |--------|------|-------|----------| | SV T | 0.39 | 0.54 | 38% | | SV L | 0.47 | 0.59 | 25% | #### HOBIT validation - compare performance in simulation with data - previous taggers utilized resolution effects to measure corrections - no longer available in MVA tagger, but now have large orthogonal datasets - measure correction scale factors using two techniques - combine the two measurements to reduce the b-tag efficiency uncertainty #### σ(tt) method - previously measure σ(tt) and b-tageff simultaneously - select tt-bar enhanced data - \odot W+3,4,5+ jet sample with large H_T - W+1 jet sample - fluctuate the b-tag eff and light-jet mistag efficiency - perform 2D χ² minimization in b-eff SF and mistag SF #### HOBIT validation - compare performance in simulation with data - previous taggers utilized resolution effects to measure corrections - no longer available in MVA tagger, but now how large orthogonal datasets - measure correction scale factors using two newly developed techniques - combine the two measurements to reduce the b-tag efficiency uncertainty #### soft-electron method - use known efficiency of SecVtx tagger to generate tag-probe sample - enhance b-content in the probe jets with soft-electron tagging - all variables orthogonal to HOBIT inputs #### HOBIT validation - combine the two measurements to reduce the b-tag efficiency uncertainty - give access to full kinematic range of jets from tt-bar and dijet events | HOBIT | eff SF | uncert | |-------|--------|--------| | tight | 0.993 | ±0.032 | | loose | 0.937 | ±0.037 | ## HOBIT in low-mass Higgs - excellent agreement in HOBIT tagged samples - single Tight tag control - HOBIT has been incorporated into most CDF low-mass analyses - each analysis optimized operating points for best signal to background - use Tight and Loose points - up to 5 tag categories TT, TL, Tx, LL, Lx ## HOBIT in low-mass Higgs | OLD – Multiple Taggers
Tagging Category | S/√B | |--|-------| | SecVtx+SecVtx | 0.228 | | SecVtx+JetProb | 0.160 | | SecVtx+Roma | 0.103 | | Single SecVtx | 0.146 | | Sum | 0.331 | | New Hobbit
Tagging Category | S/√B | |--------------------------------|-------| | Tight-Tight | 0.266 | | Tight-Loose | 0.200 | | Single Tight | 0.143 | | Loose-Loose | 0.053 | | Single Loose | 0.044 | | Sum | 0.369 | | Tag Category | b-jet eff | light jet fake | |--------------|-----------|----------------| | Tight | 42% | 0.89% | | Loose | 70% | 8.9% | increase > 10% in S/√B for WH→lvbb increase > 15% in S/√B for ZH→llbb ## jet energy resolution - b-jet calorimeter deposits have sizable differences from light-jets - develop specialized NN and corrections for b-jets to improve H→bb mass resolution ## ZH -> 11bb Signature - lepton E_T resolution is excellent and provides constraint - attribute missing-E_T to measurement of jets - trained Neural Network to balance jets against missing-E_T ## ZH -> vvbb Signature - NN based b-jet corrections - better signal/background separation - RMS/mean improves in Met+bb - 0.195 -> 0.156 - b-jet corrections now included in all H→bb analysis #### multivariate methods - develop MVA for specific backgrounds - multi-stage classification of events - separate easiest background first - train final discriminant after #### search for WZ/ZZ-X+bb - identical final state asWH/ZH→X+bb - σ σ(VZ) ≈5x <math>σ_{SM}(VH) - use same search strategy - critical test of analysis $\sigma(VZ)=4.47\pm0.64(stat)\pm0.73(syst)$ pb approximately 4.6 σ significance $\sigma_{SM}(VZ)=4.4\pm0.3$ pb ## Expected CDF Sensitivity ## Expected CDF Sensitivity #### CDF Full Combination Exclude SM Higgs at 95% C.L.: $147 < m_H < 175 \text{ GeV/c}^2$ Expect to exclude: $100 < m_H < 106 \text{ GeV/c}^2 \& 154 < m_H < 176 \text{ GeV/c}^2$ ## Global significance of excess - ► Highest local p-value at $m_H = 120 \text{ GeV/c}^2$ - mass resolution of searches, dominated by bb at low mass and WW at high mass, is broad - ▶ Estimate LEE of 4 for our entire SM search range from 100 to 200 GeV/c² | SM Higgs Searches | | | |-------------------|---------------|----------------| | Experiment | Local P-value | Global P-value | | CDF | 2.6 o | 2.Ισ | #### compatible with SM Higgs? Consistent with SM Higgs at 1σ level for mass range between 107 and 142 GeV/ c^2 #### how much did things change? Summer 2011 Winter 2012 A ~0.5 σ excess in mass range from 115 to 135 GeV/c² has become a ~2 σ excess. How can this happen? #### H→WW - ▶ 18% additional data - ▶ Small signal acceptance improvements (0.1 < ΔR_{\parallel} < 0.2) - No appreciable change in behavior of limits #### ZH→vvbb Summer 2011 Winter 2012 - ▶ 21% additional luminosity - Small improvements in background rejection - \blacktriangleright same basic behavior w/ 0.5 to 1.0 σ increases in significance of excess #### WH-Ivbb Summer 2011 Winter 2012 - ▶ 26% (69%) additional luminosity for 2-jet (3-jet) channels - ▶ 5-10% level lepton acceptance/trigger efficiency improvements - ▶ New HOBIT b-tagger equivalent to adding another 20% in additional luminosity - Limits show same basic behavior with 1.0 to 1.5 σ increases in significance of excess #### ZH→llbb Summer 2011 Winter 2012 - ▶ 23% additional luminosity - ▶ More gain from HOBIT in this analysis than WH (original tagging not as sophisticated) - ▶ 56% of data events in current analysis were not included in previous analysis! - ▶ 37% sensitivity improvement (4.67® 2.95 at m_H=120 GeV/c²) ### Tevatron strength: H→bb - Primary low mass search channels - ► WH→IVbb - ▶ ZH→vvbb - ► ZH→IIbb - ► Allows for a quasimodel independent search for associated Higgs production with H→bb ### Global Significance of H->bb - ▶ Highest local p-value is found at m_H = 135 GeV/c² - These searches are performed in the mass range between 100 to 150 GeV/c² - ▶ Estimate LEE of 2 | Single Channel Searches | | | | | | | |-------------------------|---------|---------------|----------------|--|--|--| | Experiment | Channel | Local P-value | Global P-value | | | | | CDF | H->bb | 2.9 σ | 2.7σ | | | | ### compatible with SM Higgs? - ▶ Data are most consistent with SM in mass range from 105 $< m_H < 120 \text{ GeV/}c^2$ - ▶ Behavior at higher m_H values is consistent with the expectation from a lower mass Higgs ### CDF Conclusions - ▶ CDF has significantly increased the sensitivity of its Higgs searches by incorporating the full 10 fb⁻¹ dataset and a wide range of analysis improvements - ▶ All SM searches combined - excess of Higgs-like events observed - consistent with SM Higgs production in the mass range from 107 to 142 GeV/c². - \blacktriangleright global significance of 2.1 σ - ▶ Associated Higgs production in the decay mode H→bb - excess of Higgs-like events observed, again consistent with SM Higgs production - global significance of 2.7σ ## Backup ### Tevatron Higgs Summary - Tevatron delivered a spectacular dataset - CDF and DO incorporated full dataset into Higgs searches - added considerable improvements to Higgs searches beyond luminosity - measure VZ → X+bb at 4.6σ significance and consistent with SM - Observe an excess of Higgs like event consistent with SM Higgs production - global significance of excess is 2.2σ - consistent with SM Higgs production Tevatron Exclusion 147 < m_H < 179 GeV/c² ## optimal b-quark tagger for Higgs - start with yields from previous taggers - scale efficiencies and fake rates - run pseudo experiments - c-quark discrimination had minimal effect - can afford an increase in fake rate | $WH \rightarrow \ell \nu bb$, 2jets | | | | | |--|-----------------|-------------------|-------------------|--| | CDF Run II Preliminary 7.5 fb^{-1} | | | | | | Total | ST+ST | ST+JP | ST+NN | | | Pretag Events | 184050 | 184050 | 184050 | | | $t\overline{t}$ | 142 ± 22 | 114 ± 12 | 62.8 ± 6.4 | | | Single $top(s-ch)$ | 45.0 ± 6.7 | 35.1 ± 3.4 | 18.9 ± 1.8 | | | Single $top(t-ch)$ | 13.9 ± 2.4 | 13.3 ± 2.0 | 8.7 ± 1.2 | | | WW | 1.67 ± 0.42 | $6.23{\pm}2.08$ | 5.14 ± 1.35 | | | WZ | 12.9 ± 2.0 | 10.7 ± 1.2 | 5.84 ± 0.62 | | | ZZ | 0.62 ± 0.09 | $0.49 {\pm} 0.06$ | 0.29 ± 0.03 | | | Z + jets | 9.64 ± 1.40 | 11.9 ± 1.7 | $8.75{\pm}1.30$ | | | $Wbar{b}$ | 257 ± 104 | 228 ± 91 | 125 ± 50 | | | $W c \overline{c}/c$ | 31.0 ± 12.6 | 98.3 ± 40.5 | $63.8 {\pm} 26.0$ | | | Mistag | 12.1 ± 2.9 | 52.8 ± 15.2 | 57.0 ± 14.3 | | | non-W QCD | 57.9 ± 23.6 | 85.3 ± 34.1 | 74.9 ± 29.9 | | | Total background | 584 ± 169 | 656 ± 194 | 432 ± 126 | | | Observed Events | 519 | 568 | 402 | | | WH and ZH signal (115 GeV) | 7.28 ± 0.98 | 5.34 ± 0.39 | 2.80 ± 0.19 | | # optimal b-quark tagger for Higgs - start with yields from previous taggers - scale efficiencies and fake rates - o run pseudo experiments - c-quark discrimination had minimal effect - can afford an increase in fake rate - use select variables from older taggers - combine into a single Higgs optimized Neural Network - provide multiple operating points - training with Higgs decay jets improves ### HOBIT validation - compare performance in simulation with data - previous taggers utilized resolution effects to measure corrections - no longer available in MVA tagger, but now how large orthogonal datasets - measure correction scale factors using two newly developed techniques - combine the two measurements to reduce the b-tag efficiency uncertainty ### HOBIT validation - compare performance in simulation with data - previous taggers utilized resolution effects to measure corrections - no longer available in MVA tagger, but now how large orthogonal datasets - measure correction scale factors using two newly developed techniques - combine the two measurements to reduce the b-tag efficiency uncertainty #### σ(tt) method - previously measure σ(tt) and b-tag eff simultaneously - select tt-bar enhanced data - W+3,4,5+ jet sample - W+1 jet sample - fluctuate the b-tag eff and light-jet mistag efficiency - \odot perform 2D χ^2 minimization in b-eff SF and mistag SF ### HOBIT validation - compare performance in simulation with data - previous taggers utilized resolution effects to measure corrections - no longer available in MVA tagger, but now how large orthogonal datasets - measure correction scale factors using two newly developed techniques - combine the two measurements to reduce the b-tag efficiency uncertainty #### soft-electron method - enhance b-content in a dijet sample with soft-electron tagging in away jet - correct the heavy flavor content based upon identifying photon conversions ### ZH→llbb - ▶ Examine top 20 events in both channels based on S/B of the discriminant bin in which it's located - The electron channel contains 12 new candidates within this high score region, while muon channel has 5